
University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS 1

Lecture 09
Procedure Calls in MIPS

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

MIPS Instruction Types

2

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

! R-type: All operands are in registers

Assembly: add $9, $7, $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

! I-Type: 1 operand = immediate value, others in registers
 Example: lw !"#$%#&'!()*%%%%%+%RF[19] = DM[RF[8]+32]

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

! J-type: only one operand: the target address

 Example: j 3 # Goto addr. 3 x 4 (i.e. goto addr. 12)

Op (6) Target address (26)

31 26 25 0

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

MIPS Registers

3

Name R# Usage Preserved on Call

$zero 0 The constant value 0 n.a.

$v0-$v1 2-3 Values for results & expr. eval. no

$a0-$a3 4-7 Arguments no

$t0-$t7 8-15 Temporaries no

$s0-$s7 16-23 Saved yes

$t8-$t9 24-25 More temporaries no

$gp 28 Global pointer yes

$sp 29 Stack pointer yes

$fp 30 Frame pointer yes

$ra 31 Return address yes

$at 1 Reserved for assembler n.a.

$k0-$k1 26-27 Reserved for use by OS n.a.

(and the “conventions” associated with them)

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Practical Procedures

4

int main(void) {

int i;

int j;

j = power(i, 7);

}

int power(int i, int n) {

int j, k;

for (j=0; j<n; j++)

k = i*i;

return k;

}

For example: Might look like this:

i = $6

addi $ 5, $0, 7
j power

....

arg reg. = 7

add $3, $0, $0
subi $5, $5, 1
mult $6, $6, $6
addi $3, $3, 1
sub $11, $5, $3
bneq $11, $0, loop
add $2, $6, $0
j call

power:

call:

data in ret. reg.

Advantage: Much greater code density.
(especially valuable for library routines, etc.)

i in an arg reg.

loop:

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

! The big picture:
 Caller Callee

! Need “jump” and “return”:

" jal ProcAddr # issued in the caller

• jumps to ProcAddr

• save the return instruction address in $31

• PC = JumpAddr, RF[31]=PC+4;

" jr $31 ($ra) # last instruction in the callee

• jump back to the caller procedure

• PC = RF[31]

PC

PC+4

r0

r1

r31 b0bn-1 ...

...

0

PC

HI

LO

!#,%-%!./%'.0(1.2%/33.0""*jal

jr

5

MIPS Procedure Handling

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

! What about passing parameters and return values?

" registers $4 - $7 ($a0-$a3) are used to pass first 4
parameters

" returned values are in $2 and $3 ($v0-$v1)

! 32x32-bit GPRs (General purpose registers)

" $0 = $zero

" $2 - $3 = $v0 - $v1 (return values)

" $4 - $7 = $a0 - $a3 (arguments)

" $8 - $15 = $t0 - $t7 (temporaries)

" $16 - $23 = $s0 - $s7 (saved)

" $24 - $25 = $t8 - $t9 (more temporaries)

" $31 = $ra (return address)

r0

r1

r31 b0bn-1 ...

...

32 bits

0

PC

HI

LO

6

MIPS Procedure Handling (cont.)

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Review example

7

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

! Register contents across procedure calls are designated as either
caller or callee saved

! MIPS register conventions:

"$t*, $v*, $a*: not preserved across call

• caller saves them if required

"$s*, $ra, $fp: preserved across call

• callee saves them if required

"See P&H FIGURE 2.18 (p.88) for a detailed register usage
convention

"Save to where??

! More complex procedure calls

"What if your have more than 4 arguments?

"What if your procedure requires more registers than available?

"What about nested procedure calls?

"What happens to $ra if proc1 calls proc 2 which calls proc3,…

8

More complex cases

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

! Stack

"A dedicated area of memory

"First-In-Last-Out (FILO)

"Used to

#Hold values passed to a procedure as arguments

#Save register contents when needed

#Provide space for variables local to a procedure

! Stack operations

"push: place data on stack (sw in MIPS)

"pop: remove data from stack (lw in MIPS)

! Stack pointer

"Stores the address of the top of the stack

"$29 ($sp) in MIPS

9

The stack comes to the rescue

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Memory
Structure

Data
segment

Instruction
segment

Reserved

PC

SP
Higher
Mem
Addr

Stack
segment

Lower
Mem
Addr

.

.

.

Addr

i-2
i-1
i

i+1
i+2 $sp = i

Top of stack

10

Where is the stack located?

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

! Each procedure is associated with a call frame

! Each frame has a frame pointer: $fp ($30)

Argument 5
is in 4($fp)

$sp

$fp

Snap shots of stack

main

proc1

proc2

proc3

main {

…

 proc1

…}

proc1 {

…

 proc2

…}

proc2 {

…

 proc3

…}

Local
variables

Saved
Registes

($fp)
($ra)

…

Argument 5

Argument 6

11

Call frames

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS 12

Procedure call essentials (1):
Caller/Callee Mechanics

• Four places

foo() bar(int a)

{ {

 int temp = 3;

 bar(42); ...

 ... return(temp + a);

} }

1. caller at call time

4. caller after return

2. callee at entry

3. callee at exit

Who does what when?

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS 13

Procedure call essentials (2):
Typical RISC machine (MIPS)

Nam
e

R# Usage Preserved on Call

$zero 0 The constant value 0 n.a.

$v0-$v1 2-3 Values for results & expr. eval. no

$a0-$a3 4-7 Arguments no

$t0-$t7 8-15 Temporaries no

$s0-$s7 16-23 Saved yes

$t8-$t9 24-25 More temporaries no

$gp 28 Global pointer yes

$sp 29 Stack pointer yes

$fp 30 Frame pointer yes

$ra 31 Return address yes

$at 1 Reserved for assembler n.a.

$k0-$k1 26-27 Reserved for use by OS n.a.

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS 14

Procedure call essentials (3):
Good Strategy

• Caller at call time

– put arguments in $a0..$a4

– save any caller-save temporaries

– jalr ..., $ra

• Callee at entry

– allocate all stack space

– save $ra + $s0..$s3 if necessary

• Callee at exit

– restore $ra + $s0..$s3 if used

– deallocate all stack space

– put return value in $v0

• Caller after return

– retrieve return value from $v0

– restore any caller-save temporaries

most of the work

do most work at
callee entry/exit

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS 15

Procedure call essentials (4)
• Summary

– Caller saves registers

• (outside the agreed upon convention i.e. $ax) at point of call

– Callee saves registers

• (per convention i.e. $sx) at point of entry

– Callee restores saved registers, and re-adjusts stack
before return

– Caller restores saved registers, and re-adjusts stack
before resuming from the call

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Example (Nested Function Calls)

16

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Board discussion:
stack and frame pointers

17

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

int fact(int n)

{

 if (n < 1)

 return (1);

 else

 return (n * fact(n-1));

}

Example (As Complicated as It Gets)

18

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Stack of Fact Recursion

$fp
$ra
$a0

$fp
$ra
$a0

$fp
$ra
$a0

• Assume

– main calls fact at X1,
$sp=Y0, $ra=X0

• Right after entering fact:

– $ra = X1+4

– $sp = Y0

• Right before calling fact
again:

– $ra = X1+4

– $sp = Y0 - 32

• Right after returning from
fact to main:

– $sp = Y0

– $ra = X1+4

$fp
$ra

main

fact(10)

fact(9)

fact(8)

…

19

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

MIPS ISA Summary

20

• Primarily supports 32 bit data (8, 16, and 64 bit also
possible), byte addressable

• Multiple separate register spaces

– 32 General Purpose Registers

– Floating Point Registers

– several dedicated registers for specific functions, e.g.,
PC, IR, Status, etc.

– separate register sets for coprocessors

• Fixed-length, mostly horizontal instructions

• A load/store architecture: only load/store instructions
can access memory

• Similar to other post-1980!s architectures

– (and pre-1980!s architectures developed by Seymour
Cray)

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

! Design alternative:

" provide more powerful operations

" goal is to reduce number of instructions executed

" danger is a slower cycle time and/or a higher CPI

! Sometimes referred to as “RISC vs. CISC”

" virtually all new instruction sets since 1982 have been

RISC

" VAX: minimize code size, make assembly language easy

instructions from 1 to 54 bytes long!

! Examples: PowerPC and x86

Alternative Architectures

21

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

! Indexed addressing

" example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]

" What do we have to do in MIPS?

! Update addressing

" update a register as part of load
" (for marching through arrays)

" example:
" lwu $t0,4($s3) #$t0=Memory[$s3+4]

" $s3=$s3+4

" What do we have to do in MIPS?

! Others:

" load multiple/store multiple

" a special counter register “bc Loop”
 decrement counter, if not 0 goto loop

PowerPC

22

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

! Complexity:

" Instructions from 1 to 17 bytes long

" one operand must act as both a source and
destination

" one operand can come from memory

" complex addressing modes

" e.g., “base or scaled index with 8 or 32 bit displacement”

! Saving grace:

" the most frequently used instructions are not too
difficult to build

" compilers avoid the portions of the architecture that
are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

80x86 (more “properly” IA32)

23

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Translate a Program

C program Compiler
Assembly language

program

AssemblerMachine language
Module (object)

LoaderMemory

Linker

Machine language
program (executable)

Library routine
(object)

24

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

The Role of Compilers

• Can you imagine writing 1000!s or 10000!s lines of
assembly code?

• Compiler: convert HLL programs to assembly

• Goals of compiler design:

– Correct code

– Fast execution time (same as small instruction count?)

– Fast compile time

– Debugging support

– …

• Architectural choices (ISA) affect the quality of the code
that can be generated FOR the machine and the
complexity of writing the compiler itself

25

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Major Steps in a Compiler

The Front End

IR form

Dependencies:

Language dependent

Machine independent

Function

HLL program => common

intermediate representation (IR)

High-level
optimizations

Somewhat language
dependent

Largely machine independent

Optimize by changing IR
structures

Local/Global
optimization

Less language dependent

Somewhat machine
dependent

Optimize IR form within

and beyond basic blocks

Code
generator

Highly machine dependent

Language independent

Select instructions and do

machine-dependent

optimizations

Steps

Register
allocation

Less language dependent

Somewhat machine
dependent

Assign virtual registers to

Actual registers

26

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Typical Compiler Structure

27

Front-end per
language

Intermediate
representation

Dependencies:

Language dependent

Machine independent

Function

Transform language to common

intermediate form

High-level
optimizations

Somewhat language dependent

Largely machine independent

For example, procedure inlining

and loop transformations

Global
optimizer

Small language dependencies

Machine dependencies slight

(i.e. register counts/types)

Including global and local

optimizations + register allocation

Code
generator

Highly machine dependent

Language independent

Detailed instruction selection

and machine-dependent

optimizations (assembler next?)

X

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

More Details
• The front end:

– IR form is similar to assembly, but assuming infinite number of
registers

– Check syntax, semantics, etc

• High-level optimization:

– Often done on source w/output fed to later optimization
passes

– Examples: procedure inlining, loop unrolling, etc.

• Local Optimization:

– Optimize code only within a straight-line code fragment (called
a basic block by compiler folks)

– Examples: common subexpression elimination, dead code
elimination

28

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

More Details (cont!d)
• Global optimization:

– Extend local optimizations across branches

– introduce transformations aimed at optimizing loops

– Must be conservative to guarantee correct code

• Register allocation:

– Associate virtual registers to physical registers

– Use life time analysis

– Why want to maximize the use of registers?

• Code generation:

– No separate assembler is needed

– Attempt to take advantage of specific architectural
knowledge

Many difficult optimization problems in compiler design!

29

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Impact of Architecture on Compiler Design

• The compiler writer!s manifesto:

– Make the frequent cases fast and the rare cases correct!

• Guideline 1: Make things REGULAR:

– Keep the components of ISA orthogonal (or independent)
if at all possible => simplify code generation

• Guideline 2: Provide primitives, NOT solutions:

– Don!t target your architecture for a specific language.
You!re an architect, not a compiler writer!

• Guideline 3:

– Simplify trade-offs among alternatives

• Guideline 4:

– Provide instructions that bind quantities known at
compile time as constants

30

University of Notre Dame

CSE 30321 - Lecture 09 - Procedure Calls in MIPS

Impact of Compiler and HLL on ISA
• Two important questions:

– How are variables addressed and allocated?

– How many registers are needed to allocate variables
appropriately?

– Data allocation in high-level languages

• Stack

• Global data area

• Heap

– Pointers make things hard!

31

